

A. Tricomi

Cosa

Cosa è successo negli ultimi mesi?

- Libreria per il b tagging: Gabriele ha rilasciato un pacchetto
 - fornire una interfaccia semplice all'utilizzatore
 - generale e versatile in modo da poter tener conto di diversi algoritmi
 - utilizzabile per diversi scopi: HLT, offline...

Per i dettagli: presentazione al b-tau del 30/10/01 http://cmsdoc.cern.ch/cms/Physics/btau/managem ent/talks/301001/Gabriele.pdf

e draft in ~segneri/public/impl.ps

Il framework

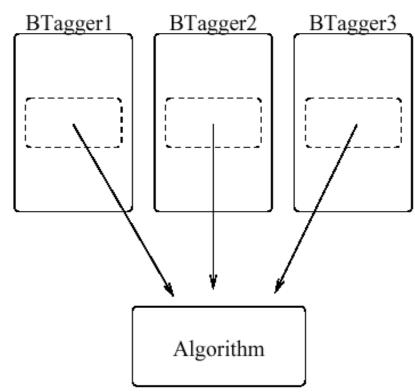
Due nuove classi: Tagger e Algorithm

- Tagger:
 - Ricostruzione degli oggetti fisici (tracce cariche, SV, elettroni, muoni)
 - un solo input: regione geometrica per la ricerca dei decadimenti dei b TaggingRegion
 - Output ancora da definire

Algorithm:

- effettua il tagging su oggetti già ricostruiti
- Fornisce tutti gli elementi decisionali e si occupa del calcolo di eventuali likelihood

Il Framework


BTagger

Reconstruction (prepare Algo inputs)

Algorithm

Prepare BTagger output

Un Tagger può usare diversi Algorithm e combinarli

Lo stesso Algorithm può essere chiamato da Tagger diversi (per es. differenti filtri sulle tracce per regioni di rapidità, energia, processo fisico, HLT o offline...)

Tools

- TaggingRegion: volume attorno all'asse del jet
 - Jet Direction (GlobalVector)
 - PrimaryVertex
 - Jet ∆R
- TaggingObject: due interfacce astratte
 - BaseTrackTaggingObject
 - SignedTransverseImpactParameter
 - SignedImpactParameter3D
 - SignedDecayLenght3D
 - BaseVertexTaggingObject
 - RecVertexDistanceFromPrimary2D
 - RecVertexDistanceFromPrimary3D
- Filtri: applicati alle RecTrack, RecVertex e TaggingRegion

Algoritmi basati su track counting

BTaggingAlgorithmByTrackCounting(int & ntracks, double & s, TgMultipleRecTrackFilter &, BaseTrackTaggingObject *);

un jet è di b se ci sono almeno ntracks con significatività del TaggingObject maggiore di una soglia s

Container delle tracce con significatività sopra la soglia

vector const RecTrack* bTracks const vector const RecTrack* & tracks, const TaggingRegion &jet)

Fornisce la decisione

bool isB(const vector const RecTrack* &tracks, const TaggingRegion &

jet) const;

Istanzia il TaggingObject

SignedImpactParameter3D ip;

istanzia l'Algorithm

BTaggingAlgorithmByCounting A(ntracks, s, filter, & ip);

applica l'Algorithm

bool isTagged = A. isB(tracks, jet);

Algoritmi basati sui SV

```
BTaggingAlgorithmBySecondaryVertex(
TgMultipleRecVertexFilter & aVertexFilter);
```

un jet è di b se c' è almeno un vertice secondario ricostruito

Container dei vertici che passano i filtri

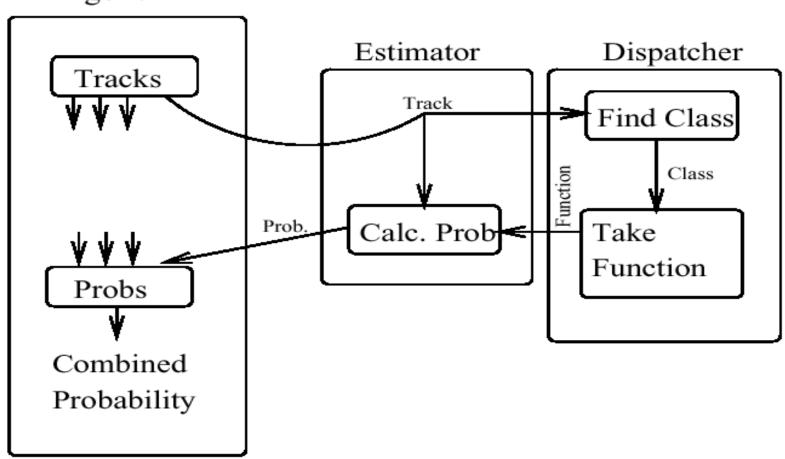
vector<const RecVertex*> bVertices(const vector<const RecVertex*> & vertices, const TaggingRegion (jet) const;

Fornisce la decisione

bool isB(const vector<const RecVertex*> &vertices, const TaggingRegion & jet) const;

Algoritmi probabilistici

II metodo:


- Ciascuna traccia appartiene ad una classe in base ai criteri di qualità di ricostruzione, all'impulso e alla regione del rivelatore che attraversa
- Per ogni traccia viene calcolata la probabilità di provenire dal PV usando la distribuzione negativa in significatività del TaggingObject
- Le probabilità delle singole tracce sono combinate ⇒ probabilità per il jet

I tools

- Track Classes
- TrackClassDispatcher
- TrackProbability Estimator
- Functions

Schema

Algorithm

<u>Algoritmi</u>

- Probabilistico a la "ALEPH"
 - OK ma mancano le calibrazioni
- Probabilistico a la "L3" (DL)
 - Implementato ma da inserire nel nuovo framework
- Likelihood ratio
 - Implementato ma da inserire nel nuovo framework
 - Mancano le calibrazioni

Problema

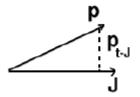
- Mancano gli eventi bb, cc, uds
- Grosso problema con la produzione
- Stiamo tentando di esportare in altre farm (CT, ?)

b triggering

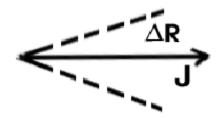
- Milestones:
 - Giugno 2002: B physics results!
 - Settembre 2002: DAQ TDR PRS ready
 - Novembre 2002: DAQ TDR submission
- Lavoro in corso
 - Tracking regionale
 - Ricostruzione parziale (Riccardo)
- Lavoro da fare
 - Molto!
 - Distribuzione fra le varie sedi...

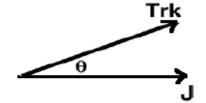
Tracking regionale

Lo scopo:


- Definire una RoI attorno alla direzione del b jet
 - Usare la minima quantità di oggetti con la massima informazione sul b-tag
 - Aumentare le performance del b-tagging in termini di velocità e data rate

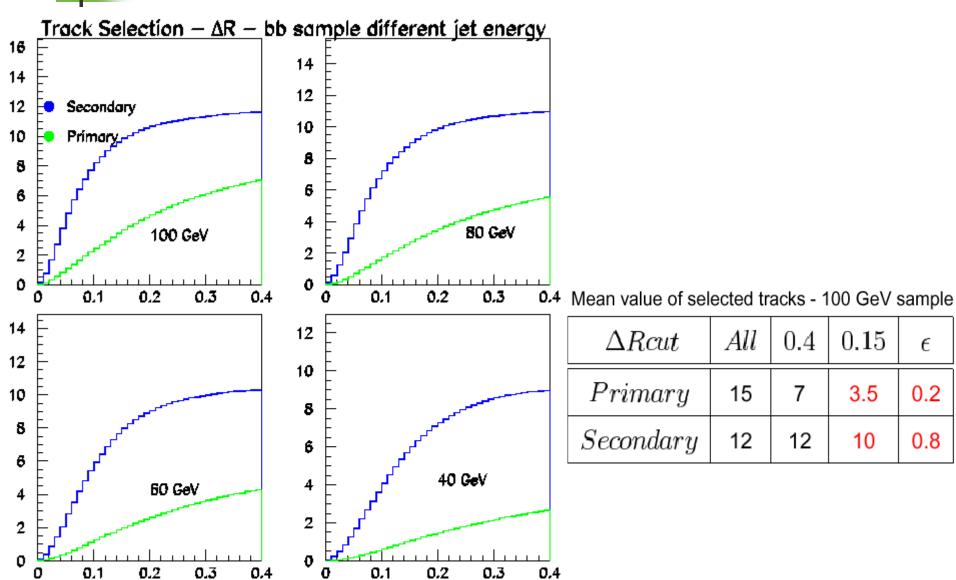
L'idea:


- Studiare il potere di selezione di diverse variabili (angolari, impulso, IP)
- Studiare il b-tag per le tracce selezionate
- Studiare l'impatto della ricostruzione attraverso il rivelatore
- Dettagli nella presentazione di Livio al b-tau del 4/12/01


Cont'd...

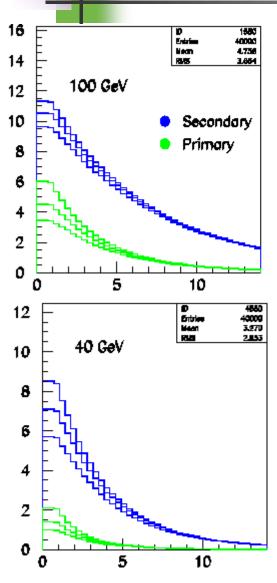
- Studio a livello di generatore
 - Differenti energie e variabili
 - Variabili legate all'impulso: P_t , P_{t-J}

• Variabili angolari: ΔR , η_{t-J}

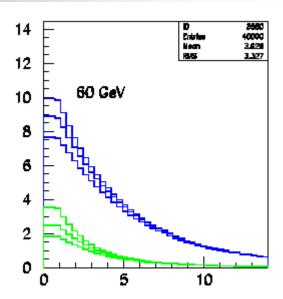


-
$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

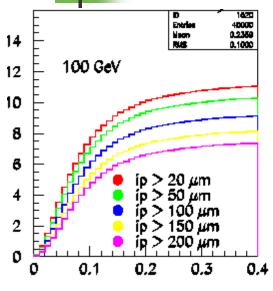
- $\eta_{t-J} = -lntan\frac{\theta}{2}$

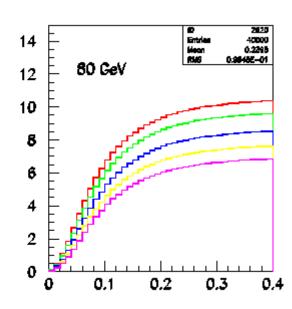

Parametro d'impatto

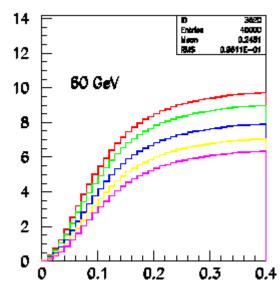


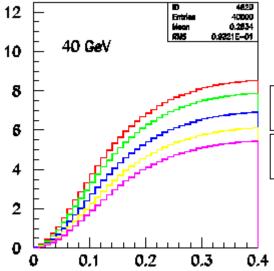

Selezione tracce vs ΔR

Selezione tracce vs p_t vs taglio in ΔR

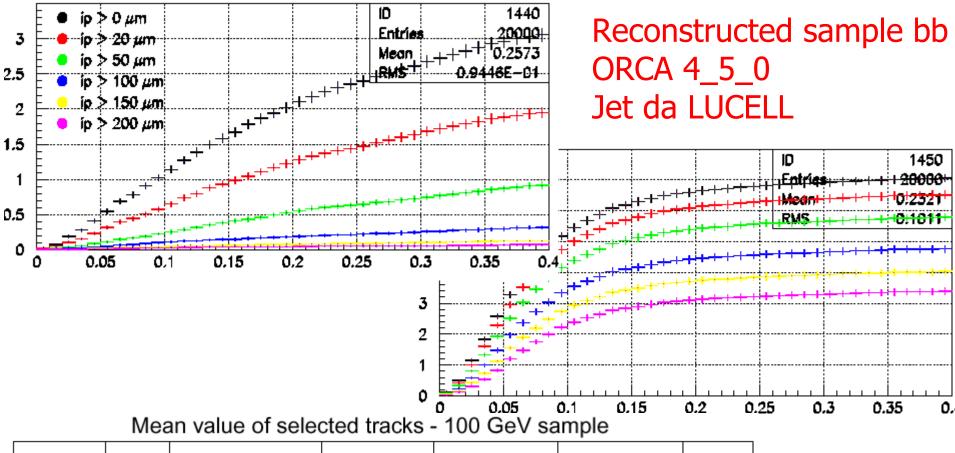

Mean value of selected tracks - 100 GeV sample


cuts	All	$\Delta R = 0.15$	$P_t > 2$	ϵ
Primary	15	3.5	2.5	0.7
Secondary	12	10	8	0.8


Taglio in p_t utile?

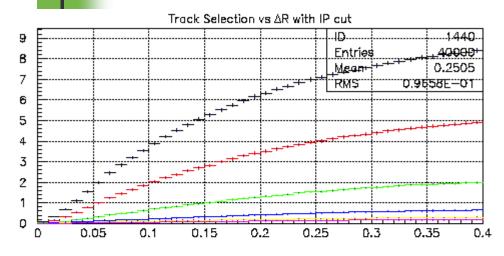


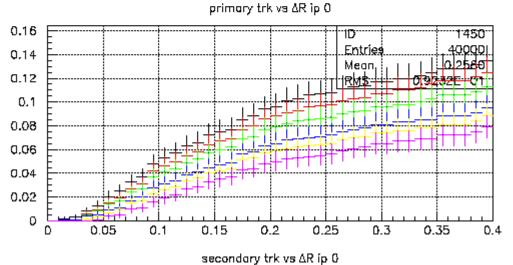
Selezione tracce vs ΔR con taglio in IP



Mean value of selected tracks - 100 GeV sample

cuts	All	$\Delta R = 0.15$	ip > 20	ip > 100	ip > 200	ϵ
Sec	12	10	9	7	6	0.7


Selezione tracce vs ΔR con taglio in IP


cuts	All	$\Delta R = 0.15$	ip > 20	ip > 100	ip > 200	ϵ
Prim	18	3	1	0.2	< 0.1	0.07
Sec	10	8	6	4	3	0.5

Selezione tracce vs ΔR con taglio in IP

Reconstructed sample uu 100 GeV ORCA 4_5_0 Jet da LUCELL

cuts	All	ip > 100	ϵ
Prim	30	0.3	0.01
Sec	1	0.04	0.04

Principali conclusioni

- RoI definita da uno scan in ΔR e η.
- La variabile △R(=0.15) dà la maggiore effficienza di selezione (17% per tracce primarie contro 80% per le secondarie)
- Includendo il taglio in p_t (>4 GeV), è possible selezionare l' 8% delle tracce primarie contro il 60% delle secondarie
- Con lo scan in IP è possible ottenere informazioni per il b-tagging: usando $\Delta R = 0.15$ e selezionando solo le tracce con IP >100 μm
 - bb 100 GeV: l'efficienza è 1% per tracce primarie e 40% per le secondarie
 - uu 100 GeV: l'efficienza è 1% per tracce primarie e 4% per le secondarie

Prossimi passi

- Ricostruzione dei Jet
- Implementazione di un filtro (on/off la parte di tracker non nella R.o.I.): quantificare la quantità di dati
- Conditional Tracking: guadagno in velocità vs full reconstruction
 - Studio dei seed
- Stima della efficiency/rate per il b-triggering con gli algoritmi esistenti: IP o DL

b-triggering: come continuare ...

- Date milestones compatibili con molte tesi
 - Studi su tracking regionale e ricostruzione parziale da finalizzare
 - Necessaria organizzazione tra noi per ottimizzare le risorse
 - Individuare alcuni canali e dividerci le responsabilità
 - $H \rightarrow hh \rightarrow 4b$
 - tt → qqqqbb
 - Singolo top vertice Wtb
 - $H^{\pm}(m > m_{top} o m < m_{top})$
 - WH \rightarrow qqbb
 - ...
 - Fondi comuni...
 - Discussione nella sessione parallela

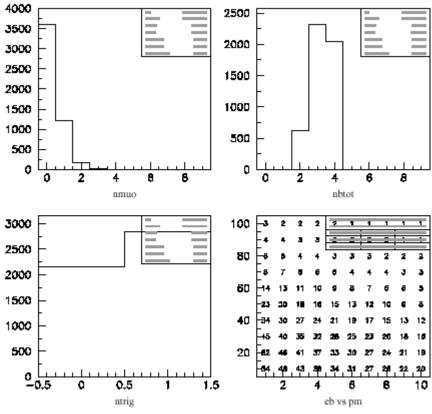
$H \rightarrow hh \rightarrow bbbb$

- Primo studio fatto da Livio
 - Studiata la sezione d'urto nel piano (m_A, tanβ)

I risultati, preliminari, indicano che:

 $taneta \sim 10$ con $m_A \sim 300$ GeV si ottiene $\sigma_{H o hh} \sim 6 \cdot 10^{-2} pb$

 Segnale caratterizzato da jet mosci. Trigger a 4 jet abbatte l'efficienza drasticamente ⇒ necessaria strategia alternativa ⇒ b tag


$H \rightarrow hh \rightarrow bbbb$

È possibile utilizzare il μ del decadimento sempileptonico del b o c (la soglia di selezione per i muoni è $P_T>$ 4-7 GeV). Nel caso di 4 b-jet è presente un μ nell'80% dei casi.

Risultati preliminari indicano che è possibile mantenere una buona efficienza di selezione:

$$P_T(\mu) >$$
 7 GeV $ightarrow$ 28% degli eventi
$$E_{tot}(b-jet) >$$
 50 GeV $ightarrow$ 41% degli eventi

Per es. abassando le soglie $P_T > 2$ GeV e E > 30 GeV \Rightarrow 40% contro 12%

