

Talk dato al Software Workshop di Roma 22/11/2001 con qualche aggiornamento

<u>Simulation of the</u> <u>CMS Tracker</u>

Tommaso Boccali – SNS Pisaon behalf of the Tracker Simulation group

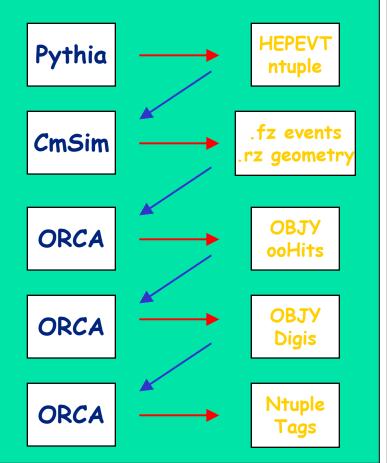
Contributions from: Ariane, Sunanda, Suchandra, Valeria, Lucia, Vitaliano, Danek, Matthias, Wolfgang, Ian, Teddy, Pedro ...

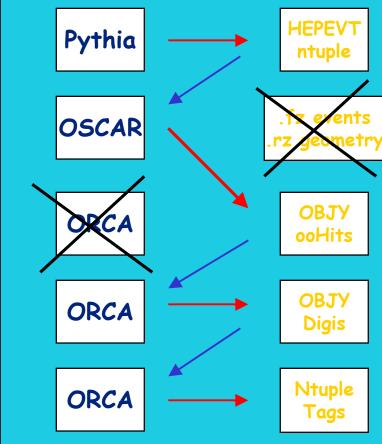
The two-fold way

The "old" way (**Geant 3**)

The "new" way

(Geant 4)




Det Sim

Conversion to OO

Digitization

Analysis

Detector Simulation

OSCAR/Geant4 is maturing fast, but the reference simulation is (and will be for quite a while) the fully working Cmsim/Geant3 system.

•Cmsim:

- Geometry description
- Material budget
- Pixel staging
- Material cuts

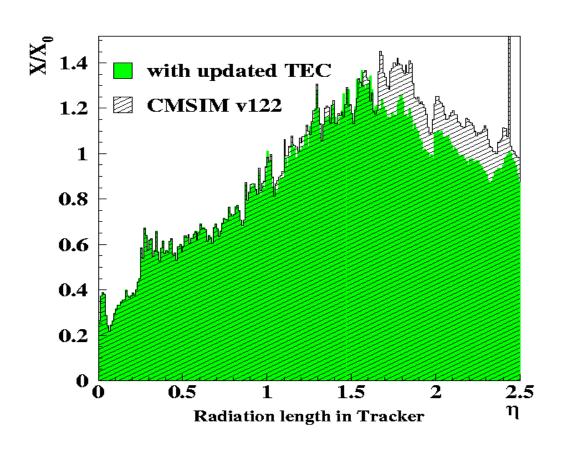
•OSCAR:

- Geometry description
- Consistence with Cmsim
- First complete tests

Geometry

Cmsim 124 released:

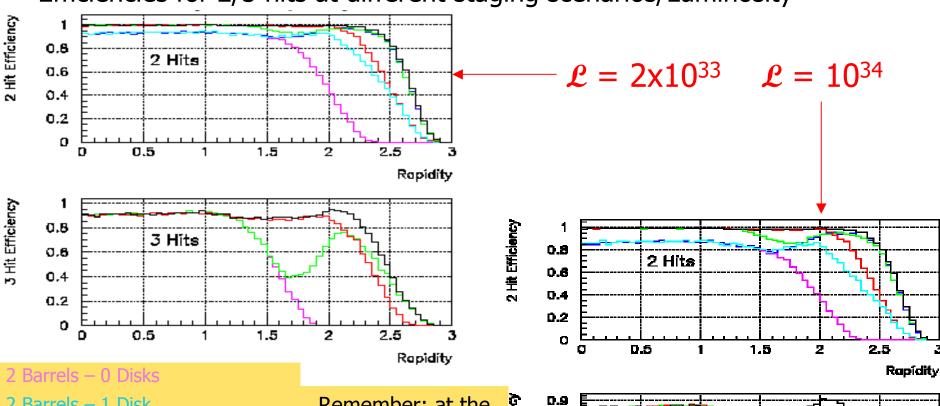
- TEC and TID updated to the same level of accuracy of the barrel (both geometry and materials)
- •Pixels: only 2 barrel layers and 1 forward disk; positions yet to be fixed (CMSIM125)
- After that, the geometry should be "stable" and massive production can start!
- Production test already started



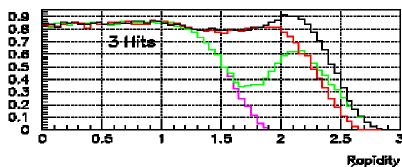
Material Budget - EndCap

new TEC shows a lower MB!

(due mainly to cables and cooling)



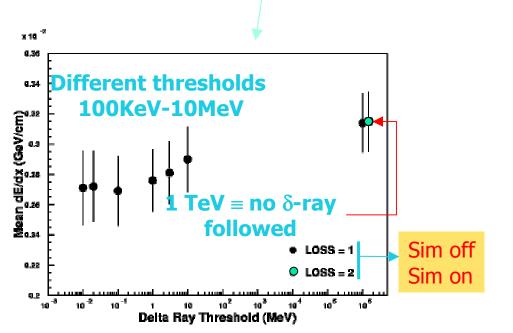
Pixel Staging

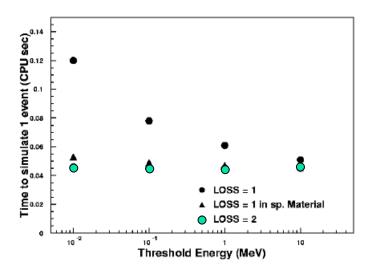


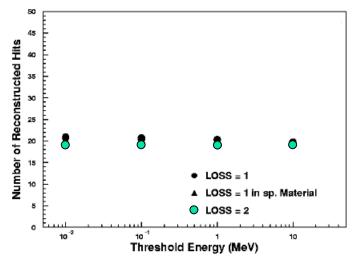
Efficiencies for 2/3 hits at different staging scenarios/Luminosity

- 2 Barrels 1 Disk
- 2 Barrels 2 Disks
- 3 Barrels 2 Disks (Optimized for 3Hit)
- 3 Barrels 3 Disk

Remember: at the moment 2 Pixels hits are needed for Track Reco



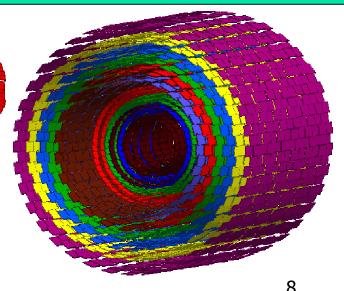



Material Cuts - Cmsim

•Simulation of δ -rays and brem. photons by Cmsim can be switched on/off, and if on can be followed for photons up to a certain threshold. An accurate description to very low energy photons is needed to understand the dE/dx, and the impact on number of Sim/RecHits and on CPU time has been studied

OSCAR – Status of geometry

but

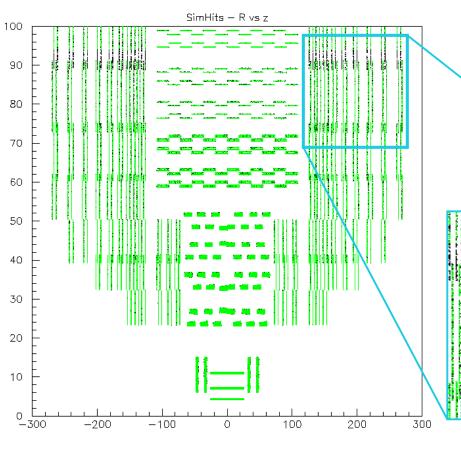


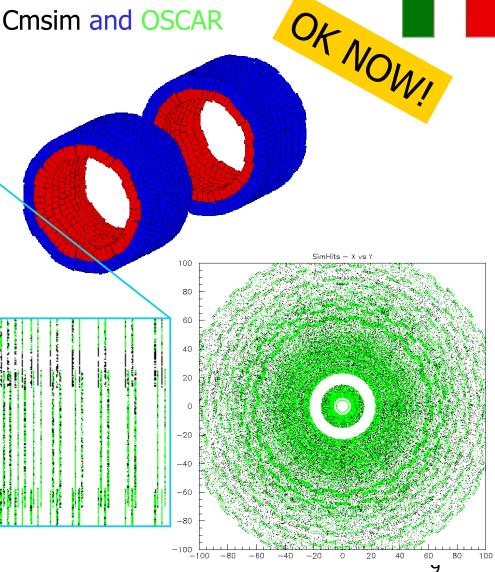
 Automatic tool to compare **Cmsim/OSCAR** geometry implemented. All the detectors (20280) are $\underline{\text{now}}$ within 5 μm and also the orientation is fine. Only the Tracker checked till now...

 No check performed at the moment on non-sensitive parts. Wait for the DDD era! (April 2002?)

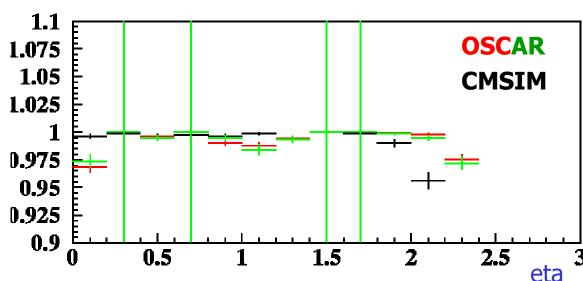
DDD (Detector Description Database) will ensure automatically the coherence of the various

> OSCAR/Cmsim/ORCA geometries




OSCAR/Cmsim comparisons

Hole in the last ring of the TEC



OSCAR/Cmsim comparisons

•Tracking efficiency: differences at the % level; <u>not always worse</u> on the OSCAR side!!

•Before you ask:

Q: "Can we use <u>now</u> OSCAR for physics studies?"

A: Not really:

- •Single muons are ok, more difficult topologies often drive to lockups (semi-infinite looping...) already addressed
- Not all the detectors are at the same level of advancement/check

...but we are moving very fast towards a really usable system!

Digitization

- ✓ A SimHit only knows about its entry and exit point in a detector (+ time of flight and energy deposit...)
- ✓ The energy released is spread into the detector volume along the line connecting these into a number of smaller deposits, whose signals are drifted to the strip plane. Landau fluctuations are allowed for the deposits.
- ✓ During the drift, Lorentz angle and diffusion are taken into account.
- ✓ Charge is injected into the strips, taking into account the inter-strip capacitive couplings. We have the so called Digis!!!
- **✓ Digis** are clusterized and RecHits are made.
- ✓ Different zero suppression algorithms can be applied.

Injection

Digitization parameters

Some parameters still to be tuned:

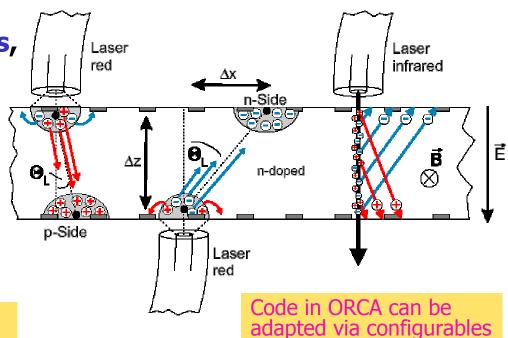
capacitive couplings

S/N

diffusion

Test-Beam analysis very important

Maybe DDD needed for implementation



Tracker Detector Response

•New and more reliable (from real tests in Karlsruhe) treatment of the Lorentz angle in silicon, as a function of bias, irradiation etc.

•Not yet implemented for pixels, where the modeling is more difficult (after irradiation, the depletion will not be complete...); wait for the optimization workshop

Lorentz angle very important for hit resolution:

•Silicon: $tan(\theta_1) = 0.12$ (~6° at 4T)

•Pixel: tan $(\theta_1) = 0.53 \ (\sim 28^{\circ} \text{ at 4T})$

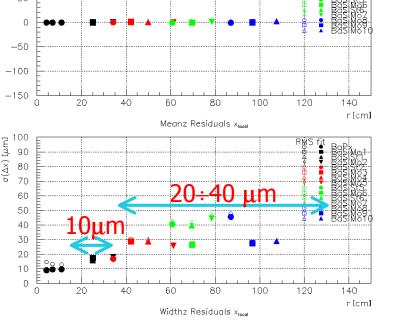
•Irradiation conditions

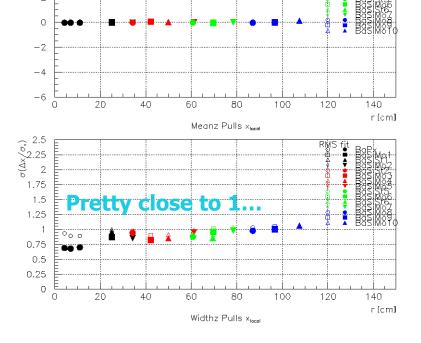
Temperature

V bias

to any

•Etc...

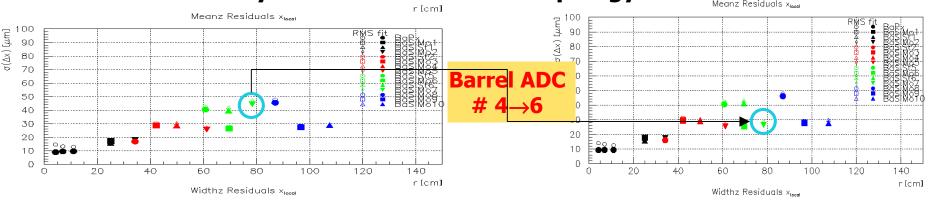

Tracker Detector Simulation


Given a set of Digitization parameters, the simulation is adjusted to parameterize correctly the estimated error on the residuals (pulls).

 $<\Delta x/\sigma_x$

RecHit residuals (μm)

RecHit residuals (pulls)



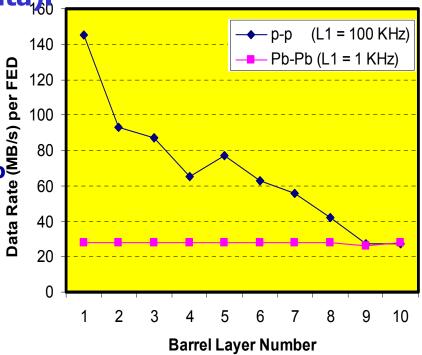
Detector Topology

- Detailed studies about the impact on reconstruction of the number of ADC per DetType has been performed.
- •The standard setup is "take the strip topology from Cmsim title file". But in this way
 - •The number of strips is not 128×#ADC, but a few % less
 - •It is not feasible to re-simulate with Cmsim each time one changes the strip topology

•New approach: the topology is configurable at digitization time, via .orcarc; smart behavior always chooses the correct topology as default

These studies could asset the impact of reducing the ADC# in the TOB by 1/3; decision accepted by the Steering Committee

Tracker Data Handling


- Tracker will be read out by 442 (-16) FEDs.
- Detailed study made of expected data rates from each FED. (for DAQ TDR)
 - **Covers p-p collisions (zero suppression)** and Pb-Pb collisions (raw data),
- Data rates per FED less than pacity of DAQ inputs (200 %)

 3/s) everywhere!

 •Comes from occupancy (strictly related to detector recover) capacity of DAQ inputs (200 MB/s) everywhere!
 - detector response)

Lorentz angle Diffusion Capacitive couplings Tilt angle...

Plans

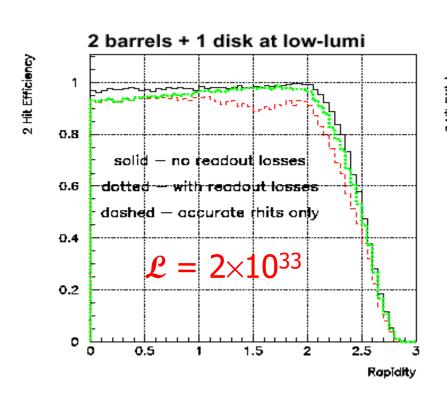
- Cmsim: fix pixels in cmsim125 and start production
- OSCAR: integration with ORCA well on the way from the Tracker, some delay in integration and in other subdetectors. The time of OSCAR as a tool for physics analysis is close!
- Simulation of detector response: code existing & working but some tuning still needed.
- Detailed studies about Tracker Data Handling/Rate: we are "safely" in the bandwidth assigned to us.

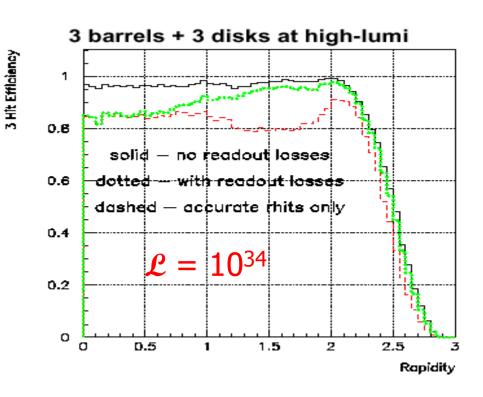
Pixel Inefficiencies

- Pixel detector will have substantial readout losses.
- ❖ These losses are due to highly stochastic nature of our events, the direct causes are: buffer overflows and dead times.
- Some type of losses affect single pixels, others whole pixel columns or even whole readout chips
- ❖The inefficiency value depends on the occupancy (luminosity & radius) and the 1st level trigger rate.

Net effect: lost pixel can

- Wipe out a RecHit
- Split a RecHit into 2


Remember: now pixel hits are at the base of tracking! (it might change soon...)



Pixel Inefficiencies

Different staging/Lumi scenarios

Expected Inefficiencies at $1/2/10 \times 10^{34}$

radius /cm/	pixels	columns	chips	total
4	1/1/1%	8.5/2.3/1.7%	0.3/0.3/0.3%	9.8/3.6/2.1%
7	1/1/1%	2.5/0.8/0.5%	0.3/0.3/0.3%	3.8/2.1/1.8%
11	1/1/1%	0.5/0.5/0.5%	0.3/0.3/0.3%	1.8/1.8/1.8%

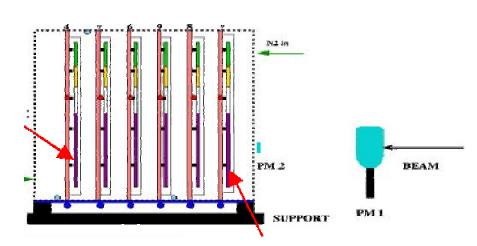
The FED is responsible for the selection of strips to be "saved" for offline analysis; only strips belonging to clusters should be passed along.

- Different zero suppression schemas have been tried S/N_{isolated strip}>5 (cut on S/N of the strip, of the whole cluster etc etc): Schema Number "2" chosen (remember: the
- algorithm must be simple enough to be implemented in FPGA!)
- Cluster position (≡RecHit position in offline!) estimated using a simple median (less sensitive to the signal than the mean)

 $S/N_{strip} > 2$

Test Beams




Activities in

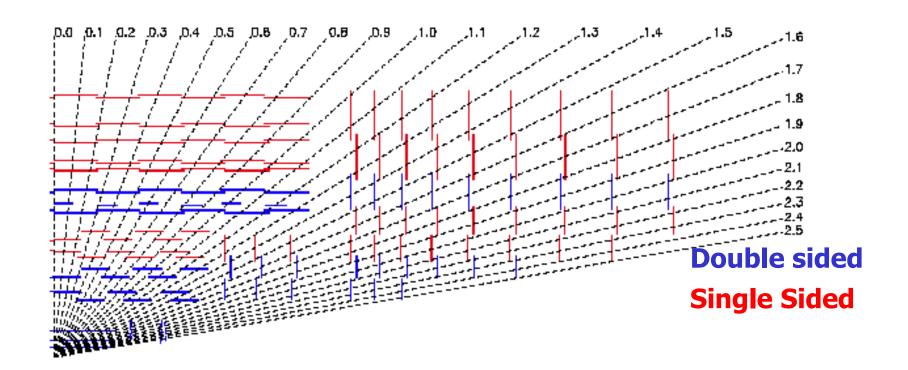
- DAQ
- Data taking
- Data analysis
- We are approaching the final module test:

It is time to check all the DAQ components and to be sure we understand the modules!

•General Framework for future studies (DAQ TDR); it will guide the full integration with ORCA and the first ORCA-based test on data handling

Outline

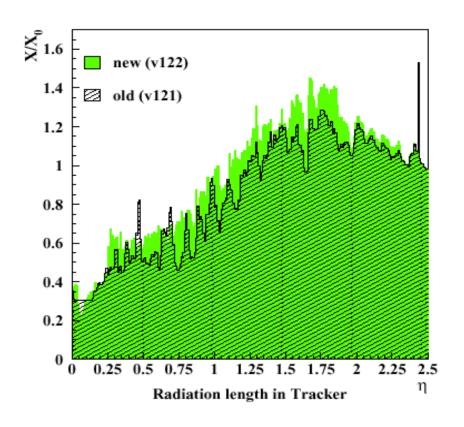
Responsibility of INFN at 70%!


- Flow of operations
- Simulation of geometry/materials (OSCAR/Cmsim)
- Simulation of the detectors
- Performance
- Plans

Only 20 minutes, I will avoid any technicality...

Sensor positions

✓ Correct tilt for TIB (9 deg) and TOB (0 deg), they were 12 deg in Cmsim 121


√ Geometry position re-optimized

Compensate for Lorentz angle; lower data rate

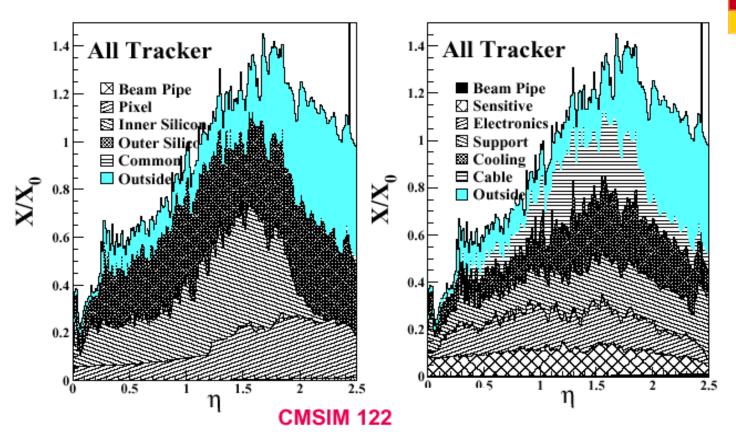
Material Budget - Barrel

Increase in radiation length of about 10 %.

But is not surprising...

Remember:

Endcaps have not been touched.


The changes in the barrel introduced a greater material budget (as usual, due to more detailed description), but...

Material Budget – cmsim122

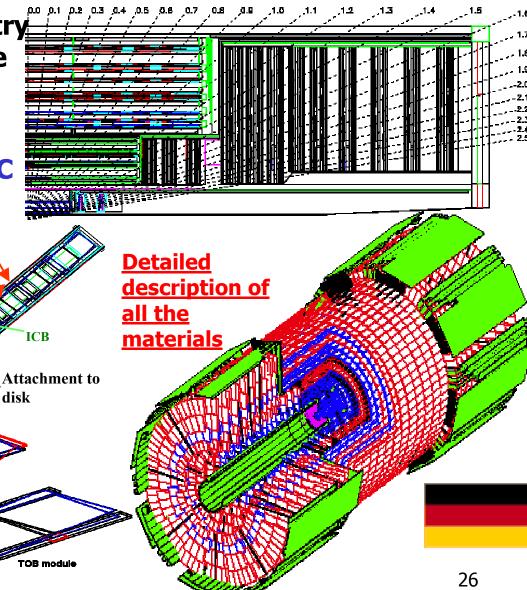
Radiation length

Detailed study on the source of the Material Budget, both for SubDet/Functional parts.

Geometry Description

Cooling

blocks


Cooling pipe

Last release of Tracker Geometry is Cmsim 122(3), released June 2001.

Currently "State of the art" for barrel (big jump from 121), TEC and TID changes foreseen by

December release.

OSCAR – Material cuts

Now it is possible to tune the material cuts in the same way of Cmsim (needed our intervention on Geant 4 collaboration...)

For the moment, all the cuts are set to the tuned ones in Cmsim. It should be a good starting point!

Same work done on Cmsim needed, will start as soon as OSCAR is considerer "stable enough"

OSCAR – HitWriting

New and improved ReadOut Unit schema wrt to ORCA/Cmsim

ORCA / Cmsim

1 ROU for all the Tracker

OSCAR

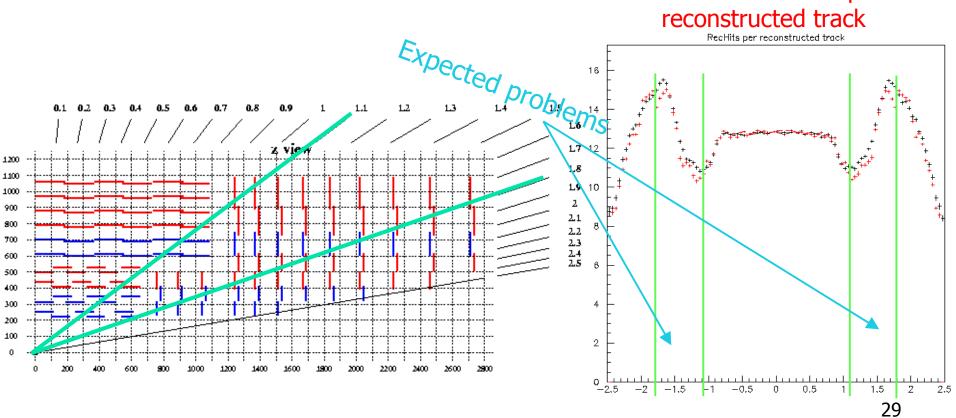
each SubDet

Tools to check the OSCAR/ORCA interface:

- Numbering schema ("Rosetta Stone" of the interface)
- Local hit position (ability to read back the ooDB)
- •Global hit position (ability to reconstruct/convert the reference systems)

By the way: Cmsim was "bad"since it had more than one reference system. To my knowledge, the Tracker in OSCAR has 4 ref systems...

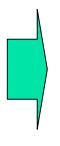
Again to be addressed by **DDD**



OSCAR/Cmsim comparisons

- •The same happened in Cmsim ~ 1 year ago. Probably a "simple" problem with overlapping volumes.
- •Does this mean we are now with OSCAR at the same level of refinement as Cmsim 1 year ago? Why not? Infact:

 Reconstructed hits per



The OO project, OSCAR

- •Based on Geant4, promises better description of "all" the interactions (frankly speaking, to be proved...)
- Part of COBRA (Common Framework)
- Better speed (already proven for single tracks?)
- •For what concerns specifically the Tracker, we need:
 - 1. Correct detector geometry
 - Correct material description (quantity + physics properties)
 - 3. Correct interfacing to ORCA.

... or at least equal to Cmsim (for initial comparisons)

