
1

Test-Beam Software

Vitaliano Ciulli

2

Goals

•Test-Beam software development

•Test-Beam data analysis

•Simulation

•Design and operation of future test-beam

3

ApvAnalysis

•ApvAnalysis is a framework designed to study the various
algorithms to be implemented in the APVs and in the FEDs.

•It has been designed having in mind:

•Modularity: each single part can be easily changed/tested
without touching the rest

•Integration with ORCA on one side and the existing TestBeam
software on the other

•Even if concrete implementations are present, they are
thought only as working examples and will be replaced

As an example we want to implement TT6 algorithms

4

The data path

ORCA

ApvAnalysis

(TestBeam) Data

•Different types of data can be
introduced in the framework:

•Already zero suppressed

•Raw

•Common mode subtracted

•These data can be passed to ORCA and
treated as regular digis; thus RecHits
can be built and the whole
reconstruction framework can be used:

•Tracking

•(Mis)Alignment

5

From ApvAnalysis to ORCA

The current granularity at ORCA level is the DetUnit, which is
connected to a SimDet.

When Digis are asked, the ReadOut unit obtains them through the
Digitizer.

Flow for
simulated

data

6

From ApvAnalysis to ORCA (2)

When digis are instead asked in
data runs, the ReadOut unit
connects to a RawReadout unit
which in turn has from 4 to 6 APV
connected. Thus, the granularity
level is now the APV instead of the
DetUnit.

This finer granularity should be
switched off by default, for speed
reasons.

ApvAnalysis should return directly
digis, to make the rest of the
reconstruction transparent.

This part is not coded yet, but well
understood on paper (Teddy)

Analysis

7

From data to ApvAnalysis

•Access to data (tape,
COBRA, FED …)

•Calculate/subtract
pedestals and CM

•Mask dead/noisy
strips

•Calculate the strip
noise

•Zero suppress the
results

•Produce digis

We identified as
main tasks to be
performed by
ApvAnalysis:

Analysis

8

Test Programs

•Skeleton.cpp

•Uses the RandomEventReader to simulate a calibration run
followed by a real data taking run (single APV) with single
strips and clusters fired. The agreement between the various
component of the raw signal (pedestals, signal, signal) is
checked.

•SkeletonZebra.cpp

•Uses the data from October X5 TestBeam. A ntuple is filled
with the signal at various stages, from raw to zero suppressed
signal.

9

Some plots with the
RandomApvEventReader

Bias due to a not clear separation
between pedestal and CM… … but the noise is centered in 0!

10

Some plots from the TestBeam
Raw signal

Subtracted signal

Output of the digis

11

Some plots from the TestBeam

The noise pull is really good
till at least 3 sigmas

The noise is really gaussian
(ad shown by Roberto)

12

Conclusions on software

•The framework EXIST (more details will be given at the next b-
tau meeting)

•Even if not ideal, the concrete classes should be enough
reasonable to start some analysis on real data

•Mostly important, people are encouraged to start and port their
algorithms to the framework (TT6?).

•Tracking?

13

Analysis

•Results from PISA group (already shown during last Tracker
week). No update.

•Cluster multiplicity increase to be understood

•Looking at the module 1 (not-inverted) may help

•Access to the APV parameters database needed

•Leonello is working on APV channel-by-channel gain differences

•Simone has started to resume Firenze analysis

14

Simulation

Next talk

15

Future Test-Beam

•Some ideas talking around (very preliminary)

•Single module

•Single Layer (DS)

•Layer 1 + Layer 3

•Tracker slice

•To be understood what we can learn from each of them, if we
need telescopes, etc…

16

Conclusion

•Software already in a good stage. We need to start implementing
algorithms

•Tracking still not possible in ORCA. Waiting for RawReadOut

•Analysis is still in early stage. Many things to understand in data.

To help finding documentation and exchange
results a web page has been created
http://cern.ch/ciulli/tbeam/testbeam.htm

17

Abstract classes (framework)

•ApvAnalysis: the class which owns all the others, can talk to the
EventReader

•ApvEventReader: the only source of data. Can be a Zebra file
reader, COBRA, a random number generator, an ASCII reader.

•TkPedestalCalculator: computes and subtracts pedestals.

•TkCommonModeCalculator: computes and subtracts event by
event CM.

•TkApvMask: masks strips if dead/noisy/whatever.

•TkNoiseCalculator: computes the strip by strip noise.

•TkZeroSuppresser: given the pedestal subtracted signal, the
mask and the noise, suppresses the strips to lower data volume.

18

Concrete implementations

To prove the functionality of the package, concrete
implementations were inherited from the abstract interfaces. They
are all working and more or less reasonable, but are intended only
as examples.

•ZebraReaderAdapter : public ApvEventReader

•reads the data from last test beam. It is an interface to
Gabriella’s ZebraReader.

•RandomApvEventReader : public ApvEventReader

•generates random raw data, simulating pedestals, noise, signal
of single strips and clusters with reasonable distributions.

19

Concrete implementations (2)

•ReferencePedestalCalculator : public TkApvPedestalCalculator

•Accumulates statistics for N events, and then averages them
to allow pedestal subtraction.

•ReferencePedestalCalculatorWithSignalRejection : public
TkApvPedestalCalculator

•Same as above, but tries to exclude from the pedestal
calculation strips containing real signal by smoothing the
response in time.

20

Concrete implementations (3)

•ReferenceCommonModeCalculator: public
TkCommonModeCalculator

•Averages the answer on the 128 strips and allows CM
subtraction.

•ReferenceCommonModeCalculatorWithSignalRejection: public
TkCommonModeCalculator

•Same as above, but skips strips with a calculated CM
compatible with coming from real signal.

21

Concrete implementations (4)

•ReferenceNoiseCalculator: public TkNoiseCalculator

•Accumulates statistics to allow an estimate of the strip by strip
noise.

•ReferenceNoiseCalculatorWithSignalRejection : public
TkCommonModeCalculator

•Same as above, but skips the strips that in one event have an
estimated noise bigger than 3 times the previous estimate.

22

Concrete implementations (5)
•ReferenceApvMask : publicTkApvMask

•Masks strips which do not show a visible noise as dead (quite
arbitrary, I must admit …)

•ReferenceZeroSuppresser : public TkZeroSuppresser

•Returns only the strips which have S/N greater than 2

•ReferenceClusterZeroSuppresser : public TkZeroSuppresser

•Returns only the strips which have S/N greater than 5 if
isolated, greater than 2 if in a cluster.

23

Some results with the
RandomApvEventReader

* NEW EVENT 10197

CommonMode generated with RandFlat::shoot(-3, 3) = -1.87979
Noise generated with RandGauss::shoot(0., 3.)

Generated Cluster on strip 46 size = 46.2764
===> Generated Cluster on strip 46, cluster width 3
-----: ZeroSuppresser returned 3 active strips
Strip: 45 Signal 16.0713
GENERATED SIGNAL CORRECTLY FOUND: Strip: 46 Signal 49.095
Strip: 47 Signal 21.2094

Event by event CM

Event by event noise

Cluster injection

Zero
suppresser
output

